
Bringing Objects to Life: Supporting Program Comprehension
through Animated 2.5D Object Maps from Program Traces

Christoph Thiede
christoph.thiede@student.hpi.de

Hasso Plattner Institute
University of Potsdam, Germany

Figure 1: Screenshot of an animated object map showing a program trace for the construction of a regular expression matcher

in the Squeak/Smalltalk programming environment. Blocks represent objects, arrows display references between objects, and

color highlights and trails show object activations. The timeline at the bottom provides a temporal overview of the program

trace and allows users to control the animation.

ABSTRACT

Program comprehension is a key activity in software development.
Several visualization approaches such as software maps have been
proposed to support programmers in exploring the architecture
of software systems, while little attention has been paid to the
exploration of program behavior and programmers still rely on
traditional code browsing and debugging tools to build a mental
model of a system’s behavior that connects abstract concepts to im-
plementation artifacts. We propose a novel approach to visualizing
program behavior through animated 2.5D object maps that depict
particular objects and their interactions from a program trace. We
describe our implementation of this approach and evaluate it for
different program traces through an experience report and perfor-
mance measurements. Our results indicate that our approach can
be beneficial for program comprehension tasks, but that further
research is needed to improve scalability and usability.

CCS CONCEPTS

• Human-centered computing → Visualization techniques; •
Software and its engineering→ Software maintenance tools.

KEYWORDS

software visualization, software maps, object-oriented program-
ming, program comprehension, omniscient debugging

1 INTRODUCTION

Exploring and understanding software systems plays a crucial role
in software development. Programmers often come across unfamil-
iar systems that they want to fix, change, or extend. For this, they
need to build up a mental model that links the system’s visible be-
havior to its high-level architecture and low-level implementation
artifacts.

Traditionally, programmers explore software systems by reading
their source code. An alternative approach is to explore the sys-
tem’s behavior by example: programmers can start by invoking the
system with a particular input or by running a test case and then
use a debugger to step through the program’s execution, identifying
relevant units and actors and exploring their interactions. As tradi-
tional debuggers are constrained to the temporal execution order
of the program, omniscient debuggers (also referred to as time-travel
debuggers or back-in-time debuggers) exist that record a program
trace and allow programmers to explore the program’s behavior
in a nonlinear fashion [39, 28, 54, 43, 53]. However, omniscient

https://orcid.org/0000-0002-7442-8216

Christoph Thiede

debuggers are unsuitable for exploring large program traces involv-
ing several subsystems and dozens of interacting objects: while
their fine-grained display of source code and variables is useful
for debugging-related activities, it impedes the exploration of the
system’s high-level architecture and behavior.

On the other hand, several visualization approaches have been
proposed to support programmers in exploring the architecture
of software systems. In particular, software maps that display the
static structure of systems using various metaphors such as cities
or forests have been found to be useful for program comprehension
tasks [75, 2, 45]. Yet, most approaches neglect the dynamic behavior
of systems and take a coarse-grained view of their structure. As a
result, these maps are inadequate for developing a mental model of
the system’s behavior that situates particular interacting objects
and connects them to the overall functioning of the system [71].

To bridge this gap between coarse-grained static software maps
and fine-grained omniscient debugging views, we propose a novel
approach for visualizing the behavior of object-oriented software
systems through animated 2.5D object maps (or (animated) object
maps for short), which depict particular objects and their interac-
tions from a program trace. In particular, we make the following
contributions:

(1) We present a novel visualization approach for object-ori-
ented program behavior using animated 2.5D object maps.

(2) We describe the implementation of our prototype trace4d
that applies this approach using a program tracer from the
Squeak/Smalltalk environment and the three.js 3D library.

(3) We discuss the potential and limitations of our approach
by reporting on our experience with it and by evaluating
the performance of our implementation, encompassing re-
sponsiveness, frame rates, and memory consumption, for
different program traces.

We make all artifacts of this work available in a public reposi-
tory1.

The remainder of this paper is structured as follows: in section 2,
we discuss relatedwork on the visualization of software architecture
and behavior. In section 3, we present our visualization approach
for program traces. In section 4, we describe our implementation of
this approach. In section 5, we explain the use of our visualization
tool by an example. In section 6, we discuss the potential and limi-
tations of animated object maps through an experience report and
a performance evaluation. Finally, we conclude and discuss future
work in section 7.

2 RELATEDWORK

Several approaches for visualizing the architecture and behavior
of software systems have been proposed in the past. In the broad
field of program visualization [50, 64, 62, 46], algorithm animation
is an early approach that mainly focuses on visualizing procedural
algorithms and data structures in educational contexts [8]. During
the last decades, more approaches have been proposed that allow
to create general-purpose visualizations for the architecture and
behavior of arbitrary software systems [57, 11, 12, 18].

1https://github.com/LinqLover/trace4d

2.1 Software Architecture Visualization

The term software maps describes a family of approaches that use
metaphors from cartography to visualize the architecture of soft-
ware systems.

Treemaps. Treemaps display the static structure of software sys-
tems by visualizing their hierarchical organization of packages and
classes, folders and files, autc.2 as a nested set of shapes [44, 45].
They offer various visual variables such as the size, color, and po-
sition of the shapes to encode additional information about the
system’s size or evolution. Shapes are usually rectangles but can
also be other polygons as in Voronoi tesselation treemaps [6]. One
popular, contemporary type of treemaps is 2.5D treemaps which add
a third dimension to the visualization by transforming each shape
into a right prism (usually a cuboid) of a variable height. Many
approaches use the software city metaphor to style the cuboids of a
2.5D treemap as buildings of a city [19, 75, 15, 1, 48, 29, 45].

Thematic software maps. Unlike treemaps which display the pro-
grammer-specified organization of a software system, thematic
software maps are a type of topic maps that use natural language
processing techniques such as source code topic models, latent
Dirichlet allocation, and multidimensional scaling to arrange units
of the software in a 2D or 3D layout [4]. Different metaphors have
been proposed to embody these graphs in a map, including board
games [3] and landscapes such as forests [2] and galaxies [5].

Animated software maps. Next to using static visual variables,
some approaches enrich software maps with animations to display
dynamic information over time [38, sec. 3.4]. Dynamic information
can relate to the behavior or evolution of software: for example,
EvoSpaces [19] highlights classes in a software city when they are
activated, while DynaCity [16], ExplorViz [33], SynchroVis [73],
and others [13] also draw connections betweenmodules to visualize
dataflow between them; Langelier et al. [37] gradually construct a
software city and update the geometries and colors of buildings to
represent development activity, and Gource [10] enhances the con-
struction animation of a file tree with moving avatars representing
code authors. Some approaches allow programmers to monitor a
system in real time [21] while others replay a previously recorded
trace of software activity [19].

2.2 Entity-Centric Behavior Visualization

To provide visual insights into the behavior of software, a natural
choice is to attribute behavior to different entities of the software.
Entities can be organizational units such as modules or classes but
also individual object instances of object-oriented programs.

Object graphs. Several tools allow programmers to explore rele-
vant parts of a program’s object graph [47, 24]. Some graphs mimic
the look of UML object diagrams and provide details about objects’s
internal state while others choose more compact representations.
To reduce the visual complexity of graph displays, some tools pro-
vide programmers with means for filtering objects based on their
organization or relation to program slices [36, 26].

2aut cetera: or so on

https://github.com/LinqLover/trace4d

Bringing Objects to Life: Supporting Program Comprehension through Animated 2.5D Object Maps from Program Traces

Communication flow. Call graphs and control-flow graphs are two
popular ways of displaying entities with their mutual dynamic in-
teractions or communications. Entities can be nodes from an object
graph [68], organizational units such as classes [56] or modules [55],
or subject to user-selected abstraction levels [36, 17, 72]. Avid [72]
and PathObjects [60] provide animated object graphs where users
can explore the control flow interactively. Boothe et al. merge the
stack frames from a control-flow graph and the nodes from an ob-
ject graph into a single memeograph that can be explored through
animation [7].

In contrast to traditional call graphs, some works have proposed
peripheral, hierarchical layouts of nodes such as Extravis’ circu-
lar bundle views [14] or the H3 hyperbolic 3D layout [49], which
provide better scaling for highly connected graphs.

Dataflow. Another perspective that can be taken on the object
graph is how state is propagated through the system. TheWhyline
approach allows programmers to ask questions about why certain
behaviors did or did not happen or where certain values came
from and presents the answers in a sliced control-flow graph [32].
Lienhard et al. propose an inter-unit flow view that displays the
amount of data or objects exchanged between different classes or
modules in a directed weighted graph [40]; this graph can also be
embedded into a traditional call graph [41].

State changes. Lienhard et al. also propose a side-effects graph [41,
20] (also referred to as test blueprints [42]), which shows connec-
tions between objects changing each other’s state. Similarly, object
traces describe a way to slice a call tree (section 2.3) for exploring
the state evolution of individual objects [66].Memory cities support
the heap memory analysis of programs by displaying objects and
their memory consumption in a 2.5D treemap and animating the
allocation and deallocation of objects [74].

2.3 Time-Centric Behavior Visualization

Besides the communication or evolution of entities, another per-
spective that visualizations often take on software behavior is the
temporal order of program execution.

Call trees. A call tree is a hierarchy of stack frames or method in-
vocations that can be obtained from a program trace. Besides naive
graph representations of this data structure, several approaches
display call trees using hierarchical layouts such as treemaps, sun-
bursts, or icicle plots [34, 69, 76]. Similarly to icicle plots, flame
graphs show the historical call stack over time but also assign col-
ors to stack frames to display additional performance data from
profiling tools [25].

Sequential displays. UML sequence diagrams are a traditional
approach to displaying communication between objects over time.
Several tools adopt [63] and extend [26] this diagram type: for exam-
ple, ISVis’ information mural [31] and Extravis’ massive sequence
view [14] derive miniaturized versions of a sequence diagram [38,
sec. 3.4], and Ovation [17] detects execution patterns to reduce
sequence diagrams [26].

StackFrame

method
startTime
endTime

Object

label
x

Class

name
path

Field

name
value

children*

receiver

*

Figure 2: UML class diagram showing the data model of an

object-oriented program trace for the visualization.

3 VISUALIZATION APPROACH

To support the comprehension of object-oriented programs, we
propose animated 2.5D object maps as a novel visualization approach
for program traces. In the following, we describe the prerequisites
and the design of our approach.

3.1 Data Model

The data source of our visualization is the program trace of an
object-oriented program. In this programming paradigm, all be-
havior is described as messages sent from one object to another.
Each object is characterized by its identity which distinguishes it
from all other objects in the system, its state which is represented
by its fields such as array elements and instance variables, and its
behavior which is implemented by methods that are invoked to
receive messages [67].

We assume a minimal data model of the program trace (fig. 2):
the call tree is represented as a composite structure of stack frames
each of which specifies a time interval, an invoked method, and a
receiver object. Each object is assigned a label, a list of named fields,
and a class. Each class is described by a name and an organizational
path in the file or package structure of the software system. We
neglect runtime changes to the state, label, or class membership of
objects as well as asynchronous or concurrent program behavior
and metaprogramming peculiarities such as the implementation of
classes or methods as objects.

3.2 Visual Mapping

We describe the design of our visualization and the mapping of
parts from the program trace to elements and visual variables of
our visualization (fig. 1). At the highest level, an animated 2.5D
object map is an interactive information landscape that displays
objects and their interactions from the program trace. Users can
replay the program trace and watch the activation of objects, i.e.,
the invocation of any of their methods, and their interaction, i.e.,
the exchange of messages between two objects. They can navigate
freely through the visual scene using their keyboard and pointing
devices and view the map from all sides.

Objects. Each object is represented as a square cuboid block entity
that displays the label and fields of the object (fig. 3). To maximize

Christoph Thiede

Figure 3: Visual mapping of objects, fields, and references to

block entities, tiles, and arrows in the object map.

legibility from any perspective, the label is repeated on all four
sides and in four orientations on the top of the block. Fields are
displayed as tiles that are arranged in a row-wise uniform-sized grid
layout and repeated on each side of the block for better legibility.
References between objects are rendered as directed arrows from
the closest tile of the referencing field to the closest label of the
referenced object’s entity. To indicate the direction of arrows, we
place between one and ten evenly distributed chevrons on the arrow
line; each chevron is displayed as a cone whose direction can be
recognized from any perspective.

Object graph. All object blocks are placed on a plane in the 2.5D
object map. For their arrangement, we define a force-directed graph
layout [22]. Between each pair of object blocks 𝑎 and 𝑏, we apply
several weighted attractive forces based on the class membership
(𝐹class), the organizational proximity of classes (𝐹org), and the ref-
erences (𝐹ref) and communication (𝐹comm) between objects. In the
following definitions, the respective𝑤 denote the weight of each
force, and org(𝑜) denotes the organizational path of an object 𝑜’s
class (e.g., a file path):

𝐹class (𝑎, 𝑏) =
{
𝑤class, if class(𝑎) = class(𝑏);
0, otherwise.

.

𝐹org (𝑎, 𝑏) = 𝑤org
(
commonPrefixLength(org(𝑎), org(𝑏))

)
.

𝐹ref (𝑎, 𝑏) = 𝑤ref
(
number of fields in 𝑎 that reference 𝑏

)
.

𝐹comm (𝑎, 𝑏) = 𝑤comm
(
number of messages from 𝑎 to 𝑏

)
.

In addition to the attractive forces, we define globally weighted
repulsion and centripetation forces on all blocks to control the en-
tropy of the graph, and we define radial constraints to avoid colli-
sions between blocks.

Table 1: Default configuration of force weights for the object

graph layout (columns represent assignments). References

between objects dominate the layout while organizational

proximity and communication between objects are weighted

lower. Users can override these weights for specific program

traces.

Object-specific forces Generic forces

𝑤
class

𝑤org 𝑤
ref

𝑤comm 𝑤
repulse

𝑤center

0.001 𝐹 ↦→ 0.005
(
log10 (𝐹) + 1

)
0.1 0.00001 0.2 0.00142

We provide an empirical base configuration for all force weights
but allow users to override them for specific program traces. By
default, we give the highest weight to reference forces and the low-
est weight to organizational forces with a six-order-of-magnitude
difference and scale organizational forces logarithmically (table 1).
This configuration encourages a state-centric layout of the object
graph while leaving a margin for the characteristics of particular
program traces (e.g., their ratio between intrinsic and extrinsic
state [23, p. 218ff]) towards a more dataflow-driven layout. In ad-
dition, users can drag and drop blocks to customize the layout. To
reduce response time [61, chap. 11] and maintain an experience of
immediacy [70], we render the graph at regular update intervals
even before the force simulation has converged.

Object selection. Usually, even after restricting the object graph
to the receivers from the call tree (section 3.1), only a small part of
it is relevant for comprehending the high-level behavior of a pro-
gram while many other objects fulfill lower-level implementation
details. In our visualization, we use a filter system for excluding
objects based on their label, class, or organization. Similar to the
layout configuration (object graph), we provide an empirical default
configuration that excludes certain base objects such as collections,
booleans, and numbers, but allow users to customize these filters.

Object behavior. The color of each object block indicates its re-
cent activity: inactive blocks are colored in a neutral light gray while
active blocks whose objects have recently received a message are
highlighted in a bright red (fig. 4). After the control flow passes on
to other objects, blocks fade linearly back to the base color within
one second, thus applying a single-hue continuous sequential color
scheme by Brewer et al.3

In addition to the color coding, a trail connects the 𝑘 = 15 most
recent object activations to support the delayed observation of short
activations and the recognition of the exact activation order. The
trail curve is based on a centripetal Catmull-Rom spline [9] with
control points are placed on the top of each relevant block and
alternated with intermediate points between blocks. Block control
points are randomized using a normal distribution to distinguish
multiple activations of the same object. Intermediate control points
are raised vertically to give the curve a wave-like shape that makes
activated objects identifiable. The direction of the trail is displayed
by continuously moving it to the next object during the animation
and applying a linear translucency gradient to fade out the tail of
the curve.

Timeline. The object map integrates a timeline overlay at the
bottom of the viewport that provides a time-centric navigation
aid. The timeline consists of two widgets stacked on top of each
other (fig. 5): a player with a slider and a play/pause button displays
the current point in time of the program trace and allows users to
control the time and animation state. Behind the player, a collapsed
flame graph shows the course of the call stack depth. Users can
resize the timeline to explore the full call tree hierarchy and examine
individual frames in the flame graph.

Both the flame graph and the object map are interactively linked;
i.e., users can hover over an object in the map to discover all of its

3Cynthia Brewer and Mark Harrower. 2013 – 2021. ColorBrewer: Color Advice for
Cartography. Pennsylvania State University. URL: https://colorbrewer2.org/

https://colorbrewer2.org/

Bringing Objects to Life: Supporting Program Comprehension through Animated 2.5D Object Maps from Program Traces

Figure 4: Visual mapping of object behavior to block colors

and trail in the object map. The intensity of the red color indi-

cates the recency of the last message received the correspond-

ing object. The gradient trail curve connects the most recent

object activations (control points of the curve are marked

with a cross ()).

activations in the timeline, or vice versa, they can click on a frame
to fast-forward or rewind the trail in the map to the corresponding
object activation. Thus, object map and timeline provide two or-
thogonal means of navigating through the object-oriented program
trace at different granularities.

4 IMPLEMENTATION

We demonstrate the feasibility of animated 2.5D object maps by de-
scribing the implementation of our prototype trace4d that displays
program traces from a Squeak/Smalltalk environment (backend) in
a web application (frontend).

Program tracing. Squeak/Smalltalk is an interactive development
environment (IDE) that is based on the object-oriented paradigm
(everything is an object, including classes, methods, and stack
frames) and gives programmers rich control to inspect and ma-
nipulate all parts of the system (by instrumenting method objects,
recording stack frame objects, etc.) [30, 59, 65]. In our backend
implementation, we use the TraceDebugger4 [66], which is an
omniscient debugger for Squeak, to record a program trace of in-
teresting behavior such as compiling a method, matching a string

4https://github.com/hpi-swa-lab/squeak-tracedebugger

Figure 5: Timeline overlay consisting of widgets for control-

ling the playback of the program trace and a flame graph

with a variable level of detail for navigating the call tree. The

flame graph and the object map are interactively linked, e.g.,

the user can hover over a frame to highlight the correspond-

ing object in the map.

against a regular expression, or handling user events in a graphical
user interface (GUI).

We serialize the resulting program trace consisting of a call tree,
an object graph, and a class hierarchy and export it to a JSON file. To
retrieve the fields for each object, we use Squeak’s built-in inspector
tool [65, chap. 6, sec. 3] which collects all instance variables or array
elements from each object but also provides higher-level views on
the state of known domain objects; for example, the view on a
dictionary will omit its internal overallocation array structure and
instead display a more comprehensible collection of key-value pairs.
As for the objects referenced as values from fields, we include in the
serialization only those objects that receive at least one message
in the program trace but only store a flat string representation of
all other objects to avoid traversing the entire object graph of the
system, most of which is irrelevant to the particular program trace.

Visualization. We implement the visualization frontend of trace-
4d as a JavaScript web application. The web app retrieves a seri-
alized program trace and provides a programmatic interface for
customizing the visual configuration (section 3.2). To build the 2.5D
object map, we generate and display a 3D scene from the program
trace using the JavaScript 3D library three.js5 and layout the object
blocks using the d3-force module of the visualization framework
d3.js6. To build the timeline, we create a flame graph using the
d3-flame-graph plugin for d3.js7 and combine it with a custom
HTML widget for the player controls8. To animate the visualization,
we traverse the call tree at a configurable speed (defaulting to 50
bytecode instructions per second) and update the color highlights
and trail for activated objects at each animation tick.

5https://threejs.org/
6https://d3js.org/
7https://github.com/spiermar/d3-flame-graph
8As d3-flame-graph at the time of writing does not support a notion of starting points
but only lengths for frames, we inject auxiliary transparent frames into the flame graph
to adjust the horizontal layout of actual frames (see https://github.com/spiermar/d3-
flame-graph/issues/227).

https://github.com/hpi-swa-lab/squeak-tracedebugger
https://threejs.org/
https://d3js.org/
https://github.com/spiermar/d3-flame-graph
https://github.com/spiermar/d3-flame-graph/issues/227
https://github.com/spiermar/d3-flame-graph/issues/227

Christoph Thiede

5 USE CASE: EXPLORING THE INTERNALS OF

A REGULAR EXPRESSION ENGINE

To illustrate how animated object maps can support program com-
prehension, we describe how a fictional programmer could use
the trace4d visualization to explore the way a regular expression
engine constructs a matcher from a pattern. The Regex package in
Squeak provides a Smalltalk-specific flavor of regular expressions.
To construct a matcher, the package first parses the pattern string
into an abstract syntax tree (AST) and then compiles the AST into
a non-deterministic finite automaton (NFA). In this example, our
programmer visualizes the construction of the simple regular ex-
pression \d|\w+ to gain a better understanding of the subsystems
involved and their interactions.

To create the visualization, the programmer records and exports a
trace of the program '\d|\w+' asRegex in Squeak and loads it into
the trace4dweb app9. As the visualization loads, she can see about
25 objects moving around in the object map and arranging them-
selves into a semi-structured graph within a few seconds (fig. 1). By
navigating through the scene, she can discover several meaningful
objects and clusters of objects:

• the pattern string '\d|\w+';
• an RxParser object accessing the string via a ReadStream;
• eight objects referencing each other whose class names

begin with the prefix Rxs, identifying them as nodes of the
AST;

• an RxMatcher object surrounded by six objects whose class
names start with Rxm, identifying them as states of the
matcher’s NFA;

• several other loosely structured objects, including an Rx-
MatchOptimizer object, four Dictionarys, and a Set.

After getting a rough overview of the object graph, she starts the
animation of the program trace through the player in the timeline.
By observing the trail of object activations and the cursor position
in the timeline (default running time: 77 seconds), she notices the
following rough segments of the program execution:

(1) Invoked by the pattern string, the parser dominates the
first third of the program, accessing the pattern through
the ReadStream and talking to the AST nodes, presumably
to initialize them.

(2) Next, the matcher becomes active and accesses the AST
nodes and the NFA states simultaneously, presumably to
compile the AST into the NFA.

(3) For the remaining half of the program, the match optimizer
is active, accessing the AST again and talking to the set.

Thus, our programmer was able to gain a first overview of the
different parts of the Regex package and their collaboration to
realize the construction of the matcher. Besides, she also could
notice that almost 50% of the time was spent in the match optimizer.
Without a closer idea of the role of this object, she might suspect
this step to be a bottleneck in the construction and wonder if the
optimization is optional and could be skipped for certain uses of
the regular expression. To dive deeper into the implementation of
9The interactive visualization of the described trace is available at https://linqlover.gi
thub.io/trace4d/app.html?trace=traces/regexParse.json and in the Wayback Machine
of the Internet Archive. We also provide a screencast at https://github.com/LinqLover
/trace4d/blob/main/assets/examples.md#program-trace-regexparsejson.

the Regex package, she can expand the flame graph of the timeline,
identify a few entry point methods of the objects that she finds
most interesting (e.g., RxParser»parseStream:), and open them
in the Squeak IDE to browse their source code.

6 DISCUSSION

We discuss the potential and limitations of our visualization ap-
proach by reporting on our experiences and evaluating the perfor-
mance of the trace4d prototype for six different use cases.

6.1 Experience Report

To assess the use of animated object maps for program comprehen-
sion, we explored six different program traces from the domains
of string processing, GUIs, and programming tools in the trace-
4d prototype and gave a reasoned rating of our experience with
each example on a three-point Likert scale for five different criteria
regarding the usability, clarity, and insightfulness of the visual-
ization (table 2). We chose these criteria in view of short gulfs of
execution and evaluation [52] and a maximum of information that
users can gain from the visualization. We provide a full protocol of
the experience report in appendix A.

Suitable traces. We had better experiences when using the visual-
ization for smaller program traces such as various string processing
examples. On the contrary, we were more challenged when try-
ing to understand the behavior of larger program traces such as
operations in a GUI system or in a programming tool. In general,
we found animated object maps to be most practical for systems
that thoroughly adhere to the principles of object-oriented design
by defining many fine-grained, highly coherent objects and de-
scribing behavior through extensive communication between these
objects. On the other hand, program traces involving many homo-
geneous objects or unrelated subsystems contain more repetitive or
irrelevant elements and are typically less amenable to exploration
through animated object maps. Thus, it is the task of programmers
to condense interesting behavior into a minimal program by reduc-
ing inputs and eliminating dependencies, as they already use to
do when preparing a minimal reproducible example to locate the
defect in a program.

Table 2: Ratings of our experience with animated objectmaps

for program comprehension (appendix A). We gained the

most insights from smaller program traces that thoroughly

model behavior through communication between objects

and avoid many similar objects.

Program

Configu-

ration

effort

Clarity of

objects

Object

layout
Animation

Program

compre-

hension

Regex engine
• Construction + + + + +
•Matching + + + ◦ +
Morphic UI framework
• Event handling − − ◦ ◦ ◦
• Layouting ◦ ◦ + ◦ −
Inspector tool
initialization − − − − −
HTML parsing ◦ + + + +

https://linqlover.github.io/trace4d/app.html?trace=traces/regexParse.json
https://linqlover.github.io/trace4d/app.html?trace=traces/regexParse.json
https://github.com/LinqLover/trace4d/blob/main/assets/examples.md#program-trace-regexparsejson
https://github.com/LinqLover/trace4d/blob/main/assets/examples.md#program-trace-regexparsejson

Bringing Objects to Life: Supporting Program Comprehension through Animated 2.5D Object Maps from Program Traces

Program comprehension. For suitable program traces, we were
able to gain several kinds of insights and benefits from the visu-
alization: we were able to discover characteristic regions of the
object graph (e.g., the input, the AST, and the NFA for the regu-
lar expression use case, section 5) as well as significant segments
of the program behavior (e.g., the parsing, compilation, and opti-
mization stages in the same use case). Based on this overview, we
could develop and refine our mental model of the explored system’s
functioning and connect it to particular classes and objects in their
implementation. Furthermore, the interactive visualization helped
us to explore and analyze communication patterns, reflect on the
system design, and share and discuss our mental models with other
developers.

Object graph layout. The structure of the object graph layout
is critical for the comprehension of the program state. Our force-
directed graph approach provides a simple yet effective way to
describe a layout based on different static and behavioral relations
between objects and allows different types of relations to dominate
the layout depending on the characteristics of the program trace.
Especially for smaller program traces, the resulting layout allowed
us to distinguish between essential regions of the object graph.
Still, the overall structure of the force-directed layout could be
considered too weak for an optimal visual intuition.

As an alternative to the force-directed layout, we envision a
clustering of objects into groups that could be displayed in a clearer
structure through color coding or a hierarchical layout of objects.
Clusters could be derived either from the existing force-directed lay-
out or based on other distance metrics for objects such as their class
organization, their communication patterns, or from embedding
representations based on their source code or documentation.

Limitations. A general challenge in information visualization is
to reduce the complexity of the underlying data to a comprehensible

yet meaningful level [58]. For animated object maps, this challenge
manifests as ourselves being overwhelmed by the amount of objects
and messages in the visualization of larger program traces. To ad-
dress this challenge, our approach already provides a configuration
interface that allows users to reduce the complexity of the visual-
ization by filtering objects or improving the structure of the object
graph. Still, configuration requires manual effort and is therefore
a barrier for users to overcome. To reduce this barrier, we aim to
improve the convenience of the configuration interface in our pro-
totype by allowing users to refine the configuration directly in the
running visualization; however, we see more potential in further
research on automatic configuration techniques that can generate
an appropriate configuration for individual program traces.

Another source of complexity in animated object maps is the
cluttered communication between different objects that is caused by
lengthy handshakes between objects, messages that are irrelevant
to the high-level program behavior, etc. To address this challenge,
we aim to apply trace summarization techniques to eliminate im-
plementation details from the underlying program trace [27, 51].

6.2 Evaluation of Performance

Another challenge is the technical performance of the visualiza-
tion which affected our experience for larger program traces. We
evaluate the performance of our prototype in terms of the speed
of tracing and serializing program traces, the start-up time of the
visualization, the rendering frame rates during the initial force sim-
ulation as well as when playing the animation of the program trace,
and the memory consumption of the visualization (table 3).

To avoid network latency, we host the trace4d frontend lo-
cally using Node.js’ built-in http-server module10 and view the
visualization in a Google Chrome browser on the same machine.

10http-server v14.1.1, node v16.8.0.

Table 3: Performance measurements of the trace4d prototype for different program traces with respect to frame rate, memory

consumption, and the saving times and loading times. We measure the frame rate both during the initial force simulation and

when playing the animation afterward. We find the performance to be practical for most of the considered program traces but

see the need for optimization for larger program traces with respect to trace serialization, force simulation, and 3D rendering.

Program Backend (Squeak)
ab

Frontend (three.js)
ac

Tracer
d

[s]

Serializer
d

[s]

Serialization

file

[kB]

Start-up

[s]

Frame rate

(force

simulation)

[FPS]

Frame rate

(animation)

[FPS]

RAM

[MB]

GPU

[MB]

Regex engine
• Construction 76 3317 138 1247 21.7 58.6 224 479
• Matching 104 10 127 316 2250 15.1 34.0 386 491
Morphic UI framework
• Event handling 159 31 725 365 1571 22.3 52.1 267 530
• Layouting 74 14 164 369 2998 10.2 23.4 279 645
Inspector tool initialization 147 18 044 616 4676 5.6 15.3 397 1805
HTML parsing 176 17 494 453 7089 18.1 34.6 458 2022

a System: Windows 10 64-bit 22H1, Intel Core i7-8550U 1.80GHz, 16GB RAM, Intel UHD Graphics 620 8GB.
b Backend: TraceDebugger 2022-12-29, Squeak 6.1Alpha #22599, OpenSmalltalk VM 202206021410.
c Frontend: three.js r156, single-threaded, Chrome 117.0.5938.62 (inner window size: 1920 × 963).
d Excluding garbage collection.

Christoph Thiede

To measure the frame rate, we modify the stats.js library11 to
record the number of frames per second (FPS) and report the aver-
age frame rate after rendering the scene for 30 seconds. We retrieve
the memory consumption from the Chrome Task Manager for the
tab of the trace4d prototype and for the GPU process; to estimate
the effective GPU consumption of the visualization, we subtract the
GPU consumption before starting the visualization from the later
GPU consumption. To avoid distortions from the garbage collector,
we launch the visualization of each trace from an empty browser
tab, exclude the first two seconds from the frame rate measure-
ments, log the minimum memory consumption from a 30-second
interval for each measurement, and report the best average frame
rate and memory consumption of three runs for each trace.

While computational efficiency was not a design goal for our cur-
rent implementation of the trace4d prototype, it already delivers
practical performance for most of our considered program traces;
still, there is a need to optimize the frame rate, graphics memory
consumption, and saving and loading times of traces to improve
user experience and scalability. Note that the limited frame rate
during the force simulation is a deliberate trade-off to reduce the
time until the layout stabilizes and the animation can be played.

To speed up the saving times and loading times, we see great
potential for optimization in applying object filters in the back-
end before serializing the program trace. To improve the respon-
siveness of the visualization, we consider replacing the current
force-simulation library d3-force with a more efficient alternative
and extracting it from the UI thread into a parallel web worker.
Finally, we believe that the 3D rendering performance could be
improved significantly by several optimizations such as applying
a level-of-detail strategy, optimizing the memory management of
the application, or reducing the visual complexity of the scene.

7 CONCLUSION AND FUTUREWORK

In this paper, we proposed a novel approach to visualizing the be-
havior of object-oriented programs through animated 2.5D object
maps that depict particular objects and their interactions from a
program trace. We described the visual design of our approach
and implemented it in a prototypical web application that displays
program traces from a Squeak/Smalltalk environment. We illus-
trated how programmers can use our tool to explore the behavior
of object-oriented programs and found that, especially for smaller
and coherent program traces, they can gain several insights into
the structure of the object graph and the segments of the program
behavior while larger and more redundant program traces still pose
practical challenges regarding the configuration of the object map,
the clarity of the object graph, irrelevant details in the communica-
tion between objects, and the performance of the visualization.

While we used program traces from Squeak/Smalltalk in our
prototype, it is not limited to this environment but could easily be
applied to other object-oriented languages for which fine-grained
(i.e., non-sampling) program tracers exist, such as Java (e.g., using
LiveRecorder12), JavaScript (e.g., using dbux13), or Python (e.g.,
using PyTrace14).
11https://mrdoob.github.io/stats.js/
12https://undo.io/
13https://domiii.github.io/dbux/
14https://pytrace.com/

Although we have already seen promising results in our experi-
ence report, a user study with a larger number of participants and
program traces is needed to thoroughly evaluate the potential and
limitations of animated object maps for program comprehension.

In future work, we intend to scale our approach to larger pro-
gram traces by experimenting with different (hierarchical) layout
approaches [35, 4], automatic configuration heuristics, and trace
summarization techniques [27, 51] as well as by investing in tech-
nical optimizations of our prototype. To further improve the com-
pactness and overview of larger object graphs, we also consider
defining state filters for hiding irrelevant fields of objects or defining
conditions for aggregating similar objects into collapsed blocks.

Similarly, we hypothesize that the clarity of object graphs could
benefit significantly from the use of domain-specific knowledge
about the explored system [12]. For example, particular domains
such as the Regex engine or the Morphic UI framework could pro-
vide meaningful labels for objects (e.g., “\d” instead of “a RxsPredi-
cate”), recommended filter presets, or structural hints (e.g., suggest-
ing the use of the variables submorphs and owner to display the
composite structure of a Morphic widget tree in the object map).

To explore the full potential of animated object maps for pro-
grammers, we want to integrate them into their usual development
process by embedding the visualization into an IDE such as the
Squeak/Smalltalk environment. This would allow programmers to
immediately [70] switch between the program trace visualization
and existing code browsing and debugging tools to take different
views on the system under exploration; for example, they could
open an animated object map from an omniscient debugger, select
an object in the map to inspect it in an inspector tool, click on a
stack frame in the flame graph to browse it in an editor, or even
monitor a running program in the visualization. In addition, this
integration could improve the performance of our prototype, since
data (e.g., the fields of filterable objects) could be streamed into the
visualization on demand instead of serializing the entire trace in a
single operation15.

Finally, we see another interesting research direction in encoding
additional information about the system under exploration into the
visualization. For example, we could map domain-specific informa-
tion or also static or dynamic software metrics to the color, size, or
texture of object blocks to improve the recognizability and infor-
mation of object regions or to make visible design quality issues
or behavioral anomalies, resp. By going beyond simple blocks and
mapping different objects to individual glyphs such as bridges, con-
struction cranes, or vehicles, we could also apply several metaphors
based on the design and communication patterns of systems or
their underlying domain to further improve intuitive recognition
and understanding [11, 77]. In particular, we could also make visible
the evolution of the object graph by displaying and animating the
historical state of objects [66, 67], adding and removing objects
based on their lifecycle, and allowing programmers to navigate
along the history of objects.

15In terms of our trace4d prototype, one implementation strategy for this would be to
embed the web app in Squeak using the MagicMouse package (https://github.com/c
mfcmf/MagicMouse) and exchange events and data through a WebSockets connection
between the frontend and the backend.

https://mrdoob.github.io/stats.js/
https://undo.io/
https://domiii.github.io/dbux/
https://pytrace.com/
https://github.com/cmfcmf/MagicMouse
https://github.com/cmfcmf/MagicMouse

Bringing Objects to Life: Supporting Program Comprehension through Animated 2.5D Object Maps from Program Traces

ACKNOWLEDGMENTS

I sincerely thank Willy Scheibel for enabling and supervising this
seminar project, providing me with inspiring and extensive insights
into the field and methods of software visualization, and giving
with valuable advice and feedback throughout the project.

REFERENCES

[1] Susanna Ardigò, Csaba Nagy, Roberto Minelli, and Michele Lanza. 2021. Visu-
alizing data in software cities. In 2021 Working Conference on Software Visual-
ization (VISSOFT), 145–149. doi: 10.1109/VISSOFT52517.2021.00028.

[2] Daniel Atzberger, Tim Cech, Merlin de la Haye, Maximilian Söchting, Willy
Scheibel, Daniel Limberger, and Jürgen Döllner. 2021. Software Forest: a vi-
sualization of semantic similarities in source code using a tree metaphor. In
Proceedings of the 16th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications (VISIGRAPP 2021) - IVAPP.
INSTICC. SciTePress, 112–122. doi: 10.5220/0010267601120122.

[3] Daniel Atzberger, Tim Cech, Adrian Jobst, Willy Scheibel, Daniel Limberger,
Matthias Trapp, and Jürgen Döllner. 2022. Visualization of knowledge dis-
tribution across development teams using 2.5D semantic software maps. In
Proceedings of the 17th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications (VISIGRAPP 2022) - IVAPP.
INSTICC. SciTePress, 210–217. doi: 10.5220/0010991100003124.

[4] Daniel Atzberger, Tim Cech, Willy Scheibel, Daniel Limberger, and Jürgen
Döllner. 2023. Visualization of source code similarity using 2.5D semantic
software maps. In Computer Vision, Imaging and Computer Graphics Theory
and Applications: 16th International Joint Conference, VISIGRAPP 2021, Virtual
Event, February 8–10, 2021, Revised Selected Papers. Springer, 162–182. doi:
10.1007/978-3-031-25477-2_8.

[5] Daniel Atzberger, Willy Scheibel, Daniel Limberger, and Jürgen Döllner. 2021.
Software Galaxies: displaying coding activities using a galaxy metaphor. In
Proceedings of the 14th International Symposium on Visual Information Com-
munication and Interaction (VINCI ’21) Article 18. Association for Computing
Machinery, 2 pages. isbn: 9781450386470. doi: 10.1145/3481549.3481573.

[6] Michael Balzer, Oliver Deussen, and Claus Lewerentz. 2005. Voronoi treemaps
for the visualization of software metrics. In Proceedings of the 2005 ACM Sym-
posium on Software Visualization (SoftVis ’05). Association for Computing
Machinery, 165–172. isbn: 1595930736. doi: 10.1145/1056018.1056041.

[7] Peter Boothe and Sandro Badame. 2011. Animation of object-oriented program
execution. In Proceedings of Bridges 2011: Mathematics, Music, Art, Architecture,
Culture. Tessellations Publishing, 585–588. isbn: 978-0-9846042-6-5. http://arc
hive.bridgesmathart.org/2011/bridges2011-585.html.

[8] Marc H. Brown and Robert Sedgewick. 1984. A system for algorithm animation.
In Proceedings of the 11th annual conference on Computer graphics and interactive
techniques (SIGGRAPH ’84) number 3. Vol. 18. Association for Computing
Machinery, 177–186. doi: 10.1145/800031.808596.

[9] Edwin Catmull and Raphael Rom. 1974. A class of local interpolating splines.
In Computer Aided Geometric Design. Academic Press, 317–326. doi: 10.1016
/B978-0-12-079050-0.50020-5.

[10] Andrew H. Caudwell. 2010. Gource: visualizing software version control his-
tory. In Proceedings of the ACM International Conference Companion on Object
Oriented Programming Systems Languages and Applications Companion (OOP-
SLA ’10). Association for Computing Machinery, 73–74. doi: 10.1145/1869542
.1869554.

[11] Yung-Pin Cheng, Jih-Feng Chen, Ming-Chieh Chiu, Nien-Wei Lai, and Chien-
Chih Tseng. 2008. Xdiva: a debugging visualization system with composable
visualization metaphors. In Companion to the 23rd ACM SIGPLAN Conference
on Object-Oriented Programming Systems Languages and Applications (OOPSLA
Companion ’08). Association for Computing Machinery, 807–810. doi: 10.1145
/1449814.1449869.

[12] Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. 2014. The moldable debugger:
a framework for developing domain-specific debuggers. In Software Language
Engineering. Springer International Publishing, 102–121. doi: 10.1007/978-3-31
9-11245-9_6.

[13] Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen. 2017. 3D visual-
ization of dynamic runtime structures. In Proceedings of the 27th International
Workshop on Software Measurement and 12th International Conference on Soft-
ware Process and Product Measurement (IWSM Mensura ’17). Association for
Computing Machinery, 189–198. doi: 10.1145/3143434.3143435.

[14] Bas Cornelissen, Andy Zaidman, Arie van Deursen, and Bart van Rompaey.
2009. Trace visualization for program comprehension: a controlled experiment.
In 2009 IEEE 17th International Conference on Program Comprehension, 100–109.
doi: 10.1109/ICPC.2009.5090033.

[15] Tommaso Dal Sasso, Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015.
Blended, not stirred: multi-concern visualization of large software systems.

In 3rd IEEE Working Conference on Software Visualization (VISSOFT). IEEE,
106–115. doi: 10.1109/VISSOFT.2015.7332420.

[16] Veronika Dashuber andMichael Philippsen. 2022. Trace visualizationwithin the
Software City metaphor: controlled experiments on program comprehension.
Information and Software Technology, 150, 106989. doi: 10.1016/j.infsof.2022.10
6989.

[17] Wim de Pauw, David Lorenz, John Vlissides, and Mark Wegman. 1998. Ex-
ecution patterns in object-oriented visualization. In Proceedings of the 4th
Conference on USENIX Conference on Object-Oriented Technologies and Systems -
Volume 4 (COOTS’98). USENIX Association, 16. https://www.usenix.org/legacy
/publications/library/proceedings/coots98/full_papers/depauw/depauw.pdf.

[18] Sabin Devkota, Matthew P. LeGendre, Adam Kunen, Pascal Aschwanden, and
Katherine E. Isaacs. 2022. Domain-centered support for layout, tasks, and
specification for control flow graph visualization. In 2022 Working Conference
on Software Visualization (VISSOFT). IEEE, 40–50. eprint: 2108 . 03047. doi:
10.1109/VISSOFT55257.2022.00013.

[19] Philippe Dugerdil and Sazzadul Alam. 2008. Execution trace visualization in a
3D space. In Proceedings of the Fifth International Conference on Information
Technology: New Generations (ITNG ’08). IEEE. IEEE Computer Society, 38–43.
doi: 10.1109/ITNG.2008.137.

[20] Julien Fierz. 2009.Compass: Flow-centric back-in-time debugging. Master’s thesis.
University of Bern. https://scg.unibe.ch/archive/masters/Fier09a.pdf.

[21] Florian Fittkau, JanWaller, ChristianWulf, andWilhelmHasselbring. 2013. Live
trace visualization for comprehending large software landscapes: the ExplorViz
approach. In 2013 First IEEE Working Conference on Software Visualization
(VISSOFT), 1–4. doi: 10.1109/VISSOFT.2013.6650536.

[22] Thomas M. J. Fruchterman and Edward M. Reingold. 1991. Graph drawing by
force-directed placement. Software: Practice and Experience, 21, 11, 1129–1164.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380211102. doi:
10.1002/spe.4380211102.

[23] Erich Gamma, Richard Helm, Ralpha Johnson, and John Vlissides. 1994. Design
patterns: elements of reusable object-oriented software. (1st ed.). Addison-Wesley
Professional Computing Series. Pearson Education. isbn: 9780321700698.

[24] Paul Gestwicki and Bharat Jayaraman. 2005. Methodology and architecture
of JIVE. In Proceedings of the 2005 ACM Symposium on Software Visualization
(SoftVis ’05). Association for Computing Machinery, 95–104. doi: 10.1145/1056
018.1056032.

[25] Brendan Gregg. 2016. The flame graph. Commun. ACM, 59, 6, 48–57. doi:
10.1145/2909476.

[26] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. 2004. A survey of trace
exploration tools and techniques. In Proceedings of the 2004 Conference of the
Centre for Advanced Studies on Collaborative Research (CASCON ’04). IBM Press,
42–55. https://users.encs.concordia.ca/~abdelw/papers/CASCON04-TraceTo
olSurvey.pdf.

[27] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. 2006. Summarizing the
content of large traces to facilitate the understanding of the behaviour of a soft-
ware system. In 14th IEEE International Conference on Program Comprehension
(ICPC’06), 181–190. doi: 10.1109/ICPC.2006.45.

[28] Christoph Hofer, Marcus Denker, and Stéphane Ducasse. 2006. Design and
implementation of a backward-in-time debugger. In NODe 2006 – GSEM 2006
(LNI). Vol. P-88. Gesellschaft für Informatik e.V., 17–32. isbn: 978-3-88579-182-9.
https://dl.gi.de/items/ed80bc70-fcdd-4899-acc2-57f6de552aba.

[29] Adrian Hoff, Lea Gerling, and Christoph Seidl. 2022. Utilizing software architec-
ture recovery to explore large-scale software systems in virtual reality. English.
In 2022 Working Conference on Software Visualization (VISSOFT). IEEE. doi:
10.1109/VISSOFT55257.2022.00020.

[30] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the future: the story of Squeak, a practical Smalltalk written in itself. In
Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA ’97) number 10. Vol. 32.
Association for Computing Machinery, 318–326. doi: 10.1145/263700.263754.

[31] Dean F. Jerding and John T. Stasko. 1998. The Information Mural: a technique
for displaying and navigating large information spaces. IEEE Transactions on
Visualization and Computer Graphics, 4, 3, 257–271. doi: 10.1109/2945.722299.

[32] Amy J. Ko and Brad A. Myers. 2008. Debugging reinvented: asking and answer-
ing why and why not questions about program behavior. In Proceedings of the
30th International Conference on Software Engineering (ICSE ’08). Association
for Computing Machinery, 301–310. doi: 10.1145/1368088.1368130.

[33] Alexander Krause, Malte Hansen, and Wilhelm Hasselbring. 2021. Live visual-
ization of dynamic software cities with heat map overlays. In 2021Working Con-
ference on Software Visualization (VISSOFT), 125–129. doi: 10.1109/VISSOFT52
517.2021.00024.

[34] Joseph B. Kruskal and James M. Landwehr. 1983. Icicle plots: better displays
for hierarchical clustering. The American Statistician, 37, 2, 162–168. eprint:
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1983.10482733. doi:
10.1080/00031305.1983.10482733.

https://doi.org/10.1109/VISSOFT52517.2021.00028
https://doi.org/10.5220/0010267601120122
https://doi.org/10.5220/0010991100003124
https://doi.org/10.1007/978-3-031-25477-2_8
https://doi.org/10.1145/3481549.3481573
https://doi.org/10.1145/1056018.1056041
http://archive.bridgesmathart.org/2011/bridges2011-585.html
http://archive.bridgesmathart.org/2011/bridges2011-585.html
https://doi.org/10.1145/800031.808596
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1145/1869542.1869554
https://doi.org/10.1145/1869542.1869554
https://doi.org/10.1145/1449814.1449869
https://doi.org/10.1145/1449814.1449869
https://doi.org/10.1007/978-3-319-11245-9_6
https://doi.org/10.1007/978-3-319-11245-9_6
https://doi.org/10.1145/3143434.3143435
https://doi.org/10.1109/ICPC.2009.5090033
https://doi.org/10.1109/VISSOFT.2015.7332420
https://doi.org/10.1016/j.infsof.2022.106989
https://doi.org/10.1016/j.infsof.2022.106989
https://www.usenix.org/legacy/publications/library/proceedings/coots98/full_papers/depauw/depauw.pdf
https://www.usenix.org/legacy/publications/library/proceedings/coots98/full_papers/depauw/depauw.pdf
2108.03047
https://doi.org/10.1109/VISSOFT55257.2022.00013
https://doi.org/10.1109/ITNG.2008.137
https://scg.unibe.ch/archive/masters/Fier09a.pdf
https://doi.org/10.1109/VISSOFT.2013.6650536
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1145/1056018.1056032
https://doi.org/10.1145/1056018.1056032
https://doi.org/10.1145/2909476
https://users.encs.concordia.ca/~abdelw/papers/CASCON04-TraceToolSurvey.pdf
https://users.encs.concordia.ca/~abdelw/papers/CASCON04-TraceToolSurvey.pdf
https://doi.org/10.1109/ICPC.2006.45
https://dl.gi.de/items/ed80bc70-fcdd-4899-acc2-57f6de552aba
https://doi.org/10.1109/VISSOFT55257.2022.00020
https://doi.org/10.1145/263700.263754
https://doi.org/10.1109/2945.722299
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1109/VISSOFT52517.2021.00024
https://doi.org/10.1109/VISSOFT52517.2021.00024
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1983.10482733
https://doi.org/10.1080/00031305.1983.10482733

Christoph Thiede

[35] Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. 2008. Consistent layout for
thematic softwaremaps. In 2008 15thWorking Conference on Reverse Engineering
(WCRE). IEEE Computer Society, 209–218. doi: 10.1109/WCRE.2008.45.

[36] Danny B. Lange and Yuichi Nakamura. 1997. Object-oriented program tracing
and visualization. Computer, 30, 5, 63–70. doi: 10.1109/2.589912.

[37] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. 2008. Exploring
the evolution of software quality with animated visualization. In 2008 IEEE
Symposium on Visual Languages and Human-Centric Computing, 13–20. doi:
10.1109/VLHCC.2008.4639052.

[38] François Lemieux andMartin Salois. 2006. Visualization techniques for program
comprehension - a literature review. In Proceedings of the 2006 Conference on
New Trends in Software Methodologies, Tools and Techniques: Proceedings of the
Fifth SoMeT_06 (Frontiers in Artificial Intelligence and Applications). Vol. 147.
IOS Press, 22–47. isbn: 1586036734. https://ebooks.iospress.nl/volumearticle/3
136.

[39] Bil Lewis. 2003. Debugging backwards in time. In Proceedings of the Fifth Interna-
tional Workshop on Automated Debugging (AADEBUG 2003). Vol. cs.SE/0310016,
11 pages. doi: 10.48550/ARXIV.CS/0310016.

[40] Adrian Lienhard, Stéphane Ducasse, and Tudor Gîrba. 2009. Taking an object-
centric view on dynamic information with object flow analysis. In ESUG 2007
International Conference on Dynamic Languages (ESUG/ICDL 2007) number 1.
Vol. 35, 63–79. doi: 10.1016/j.cl.2008.05.006.

[41] Adrian Lienhard, Julien Fierz, and Oscar Nierstrasz. 2009. Flow-centric, back-in-
time debugging. In Objects, Components, Models and Patterns: 47th International
Conference, TOOLS EUROPE 2009, Zurich, Switzerland, June 29-July 3, 2009.
Proceedings 47. Springer, 272–288.

[42] Adrian Lienhard, Tudor Girba, Orla Greevy, and Oscar Nierstrasz. 2008. Test
Blueprints - exposing side effects in execution traces to support writing unit
tests. In 2008 12th European Conference on Software Maintenance and Reengi-
neering, 83–92. doi: 10.1109/CSMR.2008.4493303.

[43] Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz. 2008. Practical object-
oriented back-in-time debugging. In 22nd European Conference on Object-
oriented Programming (ECOOP 2008) (Lecture Notes in Computer Science).
Vol. 5142. Springer Verlag, 592–615. doi: 10.1007/978-3-540-70592-5_25.

[44] Daniel Limberger, Willy Scheibel, Jürgen Döllner, and Matthias Trapp. 2019.
Advanced visual metaphors and techniques for software maps. In Proceedings
of the 12th International Symposium on Visual Information Communication and
Interaction (VINCI ’19) Article 11. Association for Computing Machinery, 8
pages. doi: 10.1145/3356422.3356444.

[45] Daniel Limberger, Willy Scheibel, Jürgen Döllner, and Matthias Trapp. 2022.
Visual variables and configuration of software maps. Journal of Visualization,
26, 1, 249–274. doi: 10.1007/s12650-022-00868-1.

[46] Leonel Merino, Mohammad Ghafari, and Oscar Nierstrasz. 2018. Towards
actionable visualization for software developers. Journal of Software: Evolution
and Process, 30, 2, e1923. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.100
2/smr.1923. doi: https://doi.org/10.1002/smr.1923.

[47] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. 2004.
Visualizing programs with Jeliot 3. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI ’04). Association for Computing Machinery,
373–376. doi: 10.1145/989863.989928.

[48] Johann Mortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2021. Visualiza-
tion of object-oriented variability implementations as cities. In 2021 Working
Conference on Software Visualization (VISSOFT). IEEE. IEEE Computer Society,
76–87. doi: 10.1109/VISSOFT52517.2021.00017.

[49] Tamara Munzner. 1997. H3: laying out large directed graphs in 3D hyperbolic
space. In Proceedings of the 1997 IEEE Symposium on Information Visualization
(InfoVis ’97) (INFOVIS ’97). IEEE Computer Society, 2. isbn: 0818681896. https:
//graphics.stanford.edu/papers/h3/.

[50] Brad A. Myers. 1986. Visual programming, programming by example, and
program visualization: a taxonomy. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’86). Vol. 17. Association for
Computing Machinery, 59–66. doi: 10.1145/22627.22349.

[51] Kunihiro Noda, Takashi Kobayashi, Tatsuya Toda, and Noritoshi Atsumi. 2017.
Identifying core objects for trace summarization using reference relations and
access analysis. In 2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC). Vol. 1, 13–22. doi: 10.1109/COMPSAC.2017.142.

[52] Donald A. Norman. 1986. Cognitive engineering. InUser-centered SystemDesign:
New Perspectives on Human-computer Interaction. Lawrence ErlbaumAssociates,
31–61. isbn: 9780367807320. https://www.researchgate.net/profile/Donald-No
rman-3/publication/235616560_Cognitive_Engineering/links/0c960536c1820
9b825000000/Cognitive-Engineering.pdf.

[53] Michael Perscheid, Michael Haupt, Robert Hirschfeld, and Hidehiko Masuhara.
2012. Test-driven fault navigation for debugging reproducible failures. Infor-
mation and Media Technologies, 7, 4, 1377–1400. doi: 10.11185/imt.7.1377.

[54] Guillaume Pothier and Éric Tanter. 2009. Back to the future: omniscient debug-
ging. IEEE Software, 26, 6, 78–85. doi: 10.1109/MS.2009.169.

[55] Luc Prestin. 2022. Hidden modularity. Retrieved May 5, 2023 from https://gith
ub.com/LucPrestin/Hidden-Modularity.

[56] Steven P. Reiss. 2007. Visual representations of executing programs. Journal
of Visual Languages & Computing, 18, 2, 126–148. Selected papers from Visual
Languages and Computing 2005 (VLC ’05). doi: 10.1016/j.jvlc.2007.01.003.

[57] Steven P. Reiss. 2006. Visualizing program execution using user abstractions. In
Proceedings of the 2006 ACM Symposium on Software Visualization (SoftVis ’06).
Association for Computing Machinery, 125–134. doi: 10.1145/1148493.1148512.

[58] George Robertson, David Ebert, Stephen Eick, Daniel Keim, and Ken Joy. 2009.
Scale and complexity in visual analytics. Information Visualization, 8, 4, 247–
253. doi: 10.1057/ivs.2009.23.

[59] Tim Rowledge. 2001. A tour of the Squeak object engine. In Squeak: Open
Personal Computing and Multimedia. (1st ed.). Prentice Hall PTR, 26 pages.
isbn: 0130280917. https://rmod-files.lille.inria.fr/FreeBooks/CollectiveNBlue
Book/Rowledge-Final.pdf.

[60] Leon Schweizer. 2014. PathObjects: revealing object interactions to assist de-
velopers in program comprehension. Master’s thesis. Hasso Plattner Institute,
University of Potsdam. https://github.com/leoschweizer/PathObjects-Thesis.

[61] Ben Shneiderman and Catherine Plaisant. 2005. Designing the user interface:
strategies for effective human-computer interaction. (4th ed.). Pearson Education.
isbn: 0-321-19786-0. http://seu1.org/files/level5/IT201/Book%20-%20Ben%20Sh
neiderman-Designing%20the%20User%20Interface-4th%20Edition.pdf.

[62] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic pro-
gram visualization systems for introductory programming education. ACM
Transactions on Computing Education (TOCE), 13, 4, Article 15, 1–64. doi: 10.11
45/2490822.

[63] Tarja Systä, Kai Koskimies, and Hausi Müller. 2001. Shimba — an environment
for reverse engineering java software systems. Software: Practice and Experience,
31, 4, 371–394. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.386.
doi: 10.1002/spe.386.

[64] Alfredo R. Teyseyre and Marcelo R. Campo. 2009. An overview of 3D software
visualization. IEEE Transactions on Visualization and Computer Graphics, 15, 1,
87–105. doi: 10.1109/TVCG.2008.86.

[65] Christoph Thiede and Patrick Rein. 2023. Squeak by example. Vol. 6.0. ISBN
978-1-4476-2948-1. Lulu, 328 pages. isbn: 9781447629481. https://www.lulu.co
m/shop/patrick-rein-and-christoph-thiede/squeak-by-example-60/paperbac
k/product-8vr2j2.html.

[66] Christoph Thiede, Marcel Taeumel, and Robert Hirschfeld. 2023. Object-centric
time-travel debugging: exploring traces of objects. In Companion Proceedings
of the 7th International Conference on the Art, Science, and Engineering of Pro-
gramming (<Programming> ’23). ACM, 7 pages. doi: 10.1145/3594671.3594678.

[67] Christoph Thiede,Marcel Taeumel, and Robert Hirschfeld. 2023. Time-awareness
in object exploration tools: toward in situ omniscient debugging. In Proceed-
ings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward! ’23). To
appear. ACM, 14 pages. doi: 10.1145/3622758.3622892.

[68] Danny Tramnitzke. 2007. Object call graph visualization. Bachelor Thesis. Växjö
University. https://www.diva-portal.org/smash/get/diva2:205514/FULLTEXT0
1.pdf.

[69] Jonas Trümper, Alexandru C. Telea, and Jürgen Döllner. 2012. ViewFusion:
correlating structure and activity views for execution traces. In Theory and
Practice of Computer Graphics. The Eurographics Association, 45–52. doi: 10.2
312/LocalChapterEvents/TPCG/TPCG12/045-052.

[70] David Ungar, Henry Lieberman, and Christopher Fry. 1997. Debugging and
the experience of immediacy. Commun. ACM, 40, 4, 38–43. doi: 10.1145/24844
8.248457.

[71] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program comprehension
during software maintenance and evolution. Computer, 28, 8, 44–55. doi: 10.11
09/2.402076.

[72] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright, Darin
Swanson, and Jeremy Isaak. 1998. Visualizing dynamic software system infor-
mation through high-level models. In Proceedings of the 13th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA ’98) number 10. Vol. 33. Association for Computing Machinery,
271–283. doi: 10.1145/286936.286966.

[73] Jan Waller, Christian Wulf, Florian Fittkau, Philipp Döhring, and Wilhelm
Hasselbring. 2013. SynchroVis: 3D visualization of monitoring traces in the city
metaphor for analyzing concurrency. In 2013 First IEEE Working Conference on
Software Visualization (VISSOFT), 1–4. doi: 10.1109/VISSOFT.2013.6650520.

[74] Markus Weninger, Lukas Makor, and Hanspeter Mössenböck. 2020. Memory
cities: visualizing heap memory evolution using the software city metaphor.
In 8th Working Conference on Software Visualization (VISSOFT), 110–121. doi:
10.1109/VISSOFT51673.2020.00017.

[75] Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities.
In 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE Computer Society, 92–99. doi: 10.1109/VISSOF.2007.429070
6.

https://doi.org/10.1109/WCRE.2008.45
https://doi.org/10.1109/2.589912
https://doi.org/10.1109/VLHCC.2008.4639052
https://ebooks.iospress.nl/volumearticle/3136
https://ebooks.iospress.nl/volumearticle/3136
https://doi.org/10.48550/ARXIV.CS/0310016
https://doi.org/10.1016/j.cl.2008.05.006
https://doi.org/10.1109/CSMR.2008.4493303
https://doi.org/10.1007/978-3-540-70592-5_25
https://doi.org/10.1145/3356422.3356444
https://doi.org/10.1007/s12650-022-00868-1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1923
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1923
https://doi.org/https://doi.org/10.1002/smr.1923
https://doi.org/10.1145/989863.989928
https://doi.org/10.1109/VISSOFT52517.2021.00017
https://graphics.stanford.edu/papers/h3/
https://graphics.stanford.edu/papers/h3/
https://doi.org/10.1145/22627.22349
https://doi.org/10.1109/COMPSAC.2017.142
https://www.researchgate.net/profile/Donald-Norman-3/publication/235616560_Cognitive_Engineering/links/0c960536c18209b825000000/Cognitive-Engineering.pdf
https://www.researchgate.net/profile/Donald-Norman-3/publication/235616560_Cognitive_Engineering/links/0c960536c18209b825000000/Cognitive-Engineering.pdf
https://www.researchgate.net/profile/Donald-Norman-3/publication/235616560_Cognitive_Engineering/links/0c960536c18209b825000000/Cognitive-Engineering.pdf
https://doi.org/10.11185/imt.7.1377
https://doi.org/10.1109/MS.2009.169
https://github.com/LucPrestin/Hidden-Modularity
https://github.com/LucPrestin/Hidden-Modularity
https://doi.org/10.1016/j.jvlc.2007.01.003
https://doi.org/10.1145/1148493.1148512
https://doi.org/10.1057/ivs.2009.23
https://rmod-files.lille.inria.fr/FreeBooks/CollectiveNBlueBook/Rowledge-Final.pdf
https://rmod-files.lille.inria.fr/FreeBooks/CollectiveNBlueBook/Rowledge-Final.pdf
https://github.com/leoschweizer/PathObjects-Thesis
http://seu1.org/files/level5/IT201/Book%20-%20Ben%20Shneiderman-Designing%20the%20User%20Interface-4th%20Edition.pdf
http://seu1.org/files/level5/IT201/Book%20-%20Ben%20Shneiderman-Designing%20the%20User%20Interface-4th%20Edition.pdf
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.386
https://doi.org/10.1002/spe.386
https://doi.org/10.1109/TVCG.2008.86
https://www.lulu.com/shop/patrick-rein-and-christoph-thiede/squeak-by-example-60/paperback/product-8vr2j2.html
https://www.lulu.com/shop/patrick-rein-and-christoph-thiede/squeak-by-example-60/paperback/product-8vr2j2.html
https://www.lulu.com/shop/patrick-rein-and-christoph-thiede/squeak-by-example-60/paperback/product-8vr2j2.html
https://doi.org/10.1145/3594671.3594678
https://doi.org/10.1145/3622758.3622892
https://www.diva-portal.org/smash/get/diva2:205514/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:205514/FULLTEXT01.pdf
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG12/045-052
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG12/045-052
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/248448.248457
https://doi.org/10.1109/2.402076
https://doi.org/10.1109/2.402076
https://doi.org/10.1145/286936.286966
https://doi.org/10.1109/VISSOFT.2013.6650520
https://doi.org/10.1109/VISSOFT51673.2020.00017
https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1109/VISSOF.2007.4290706

Bringing Objects to Life: Supporting Program Comprehension through Animated 2.5D Object Maps from Program Traces

[76] LindaWoodburn, Yalong Yang, and KimMarriott. 2019. Interactive visualisation
of hierarchical quantitative data: an evaluation. In 2019 IEEE Visualization
Conference (VIS). IEEE, Institute of Electrical and Electronics Engineers, 96–100.
doi: 10.1109/VISUAL.2019.8933545.

[77] Hannes Würfel, Matthias Trapp, Daniel Limberger, and Jürgen Döllner. 2015.
Natural phenomena as metaphors for visualization of trend data in interactive
software maps. In Computer Graphics and Visual Computing (CGVC). The
Eurographics Association. doi: 10.2312/cgvc.20151246.

A PROTOCOL OF EXPERIENCE REPORT

Here we provide the raw data of our experience report in subsection 6.1.

A.1 Criteria

(1) Configuration effort: How many operations are required to achieve a usable configuration in terms of filters and forces?
(2) Clarity of objects: Is the quantity of displayed objects manageable or overwhelming?
(3) Object layout: Is it possible and easy to identify regions of the object graph? How meaningful are the identified patterns?
(4) Animation: Is it possible and easy to recognize, follow, and perceive the flow of activity?
(5) Program comprehension: Is it possible and easy to identify sections of the program execution? How meaningful are the identified

patterns?

A.2 Ratings

A.2.1 Regex engine.

Construction. Program trace: regexParse.json.
Criterion Positive Negative Rating

Configuration effort • no additional configuration required - +
Clarity of objects (26) - - +
Object
layout

• identified groups: input, AST, NFA - +

Animation • manageable, overly consistent speed
• no noise

• long delay in hidden dictionaries of RxMatchOptimizer +

Program comprehension • identified sections: parsing, compilation, optimization - +

Matching. Program trace: regexMatch.json.
Criterion Positive Negative Rating

Configuration effort • no additional configuration required • wait a few seconds for force simulation to stabilize +
Clarity of objects (31) - • too many similar input characters +
Object
layout

• identified groups: input, NFA - +

Animation • overly consistent speed
• no noise

• too lengthy animation / too slow speed +

Program comprehension • identified single matches - +

A.2.2 Morphic UI framework.

Event handling. Program trace: mouseDown.json.
Criterion Positive Negative Rating

Configuration effort - • required force weights:
globalFactor = 0.1

• required object filters:

excludedClassNames.push('MorphExtension',
'Dictionary')

• wait many seconds for force simulation to stabilize

−

Clarity of objects (53) - • too many morphs, too many events with redundant state
• many irrelevant fields in morphs
• labels too small when zooming out, poor font quality
• did not find central button morph

−

Object
layout

• identified groups: kinds of morphs, events • overwhelmingly large cluster of morphs ◦

Animation • followable • too lengthy animation
• some delays in hidden objects

◦

Program comprehension • identified sections: event dispatching • not identified receiver morph for event ◦

https://doi.org/10.1109/VISUAL.2019.8933545
https://doi.org/10.2312/cgvc.20151246

Christoph Thiede

Layouting. Program trace: fullBoundsTextView.json.

Criterion Positive Negative Rating

Configuration effort - • required force weights:
globalFactor = 0.1

◦

Clarity of objects (29) - • many irrelevant fields in morphs
• labels too small when zooming out

◦

Object layout • identified groups: central morphs, peripheral state - +
Animation • followable • too lengthy animation ◦
Program comprehension • identified sections: very rough tree traversal • not understood tree structure or its implications on layout −

A.2.3 Inspection tool initialization. Program trace: inspectorResetFields.json.

Criterion Positive Negative Rating

Configuration effort - • required force weights:
repulsion = .4
communication = 0
globalFactor = .4

• required object filters:
excludedObjectNames.push('an Object')

• wait many seconds for force simulation to stabilize

−

Clarity of objects (46) - • too many homogeneous inspector fields −
Object layout • identified groups: inspector fields, streams, texts • cannot distinguish versions of inspector fields −
Animation - • too lengthy animation

• insufficient frame rate
• some delays in hidden objects

−

Program comprehension • identified sections: very rough traversal of inspector fields • not identified different versions / traversals of inspector
fields

• not identified object under inspection

−

A.2.4 HTML parsing. Program trace: asTextFromHtml.json.

Criterion Positive Negative Rating

Configuration effort - • required object filters:
excludedClassNames.push('ByteString',
'Character')

• cannot filter on single relevant string
• required player configuration:

player.stepsPerSecond = 200

◦

Clarity of objects (21) - - +
Object layout • identified groups: parser with stack, text parts, streams - +
Animation • followable • slightly too lengthy animation +
Program comprehension • identified sections: parsing of HTML tags, pushing / popping

of stack, construction of text parts
- +

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Architecture Visualization
	2.2 Entity-Centric Behavior Visualization
	2.3 Time-Centric Behavior Visualization

	3 Visualization Approach
	3.1 Data Model
	3.2 Visual Mapping

	4 Implementation
	5 Use Case: Exploring the Internals of a Regular Expression Engine
	6 Discussion
	6.1 Experience Report
	6.2 Evaluation of Performance

	7 Conclusion and Future Work
	Acknowledgments
	A Protocol of Experience Report
	A.1 Criteria
	A.2 Ratings

