
Figure 2: An animated object map in our TRACE4D prototype showing a program trace for the
parsing of a regular expression in the Squeak/Smalltalk programming environment.

Each block represents an object
(an instance of a class) within the
program trace. Fields of the
object are rendered as tiles below
the label.

References between objects are
rendered as directed arrows.

The trail connects the last
k=15 active objects (that have
executed a method).

Color indicates the recency of the
last activation of the object (i.e.,
the execution of any method).

The timeline summarizes the call
tree of the program trace as a
flame graph [Gregg, 2016].

The layout of objects
 is computed using a force-
 directed graph in which objects
 with many mutual references
 or method invocations or a
 relative unit attract each other.

BRINGING OBJECTS TO LIFE: SUPPORTING PROGRAM COMPREHENSION

THROUGH ANIMATED 2.5D OBJECT MAPS FROM PROGRAM TRACES
Christoph Thiede, Willy Scheibel, and Jürgen Döllner

Hasso Plattner Institute, University of Potsdam, Germany

Christoph Thiede
christoph.thiede@student.hpi.de
github.com/LinqLover

Willy Scheibel
willy.scheibel@hpi.de
hpi3d.de/people/current/scheibel.html

Jürgen Döllner
doellner@uni-potsdam.de
www.hpi3d.de

Computer Graphics Systems Group
Hasso Plattner Institute
Prof.-Dr.-Helmert-Str. 2–3
D-14482 Potsdam, Germany

References
Gregg, B. (2016). The flame graph. Communications of the ACM, 59(6):48–57.

Krause, A., Hansen, M., and Hasselbring, W. (2021). Live visualization of dynamic
software cities with heat map overlays. In Proc. VISSOFT, pages 125–129. IEEE.

Limberger, D., Scheibel, W., Döllner, J., and Trapp, M. (2022). Visual variables and
configuration of software maps. Springer Journal of Visualization, 26(1):249–274.

Pothier, G. and Tanter, É. (2009). Back to the future: Omniscient debugging. IEEE
Software, 26(6):78–85.

Thiede, C., Taeumel, M., and Hirschfeld, R. (2023). Time-awareness in object explora-
tion tools: Toward in situ omniscient debugging. In Proc. SIGPLAN Onward!, pp. 89–
102. ACM.

Wettel, R. and Lanza, M. (2007). Visualizing software systems as cities. In Proc.
VISSOFT, pages 92–99. IEEE.

Abstract
Programmers who want to explore the architecture of software systems need
appropriate visualizations such as software maps. However, existing software
visualizations mainly display the static software structure, neglecting important
dynamic runtime behavior. We propose animated 2.5D object maps that depict
particular objects and their interac-tions from a program trace. From our experience of
using our prototype with a couple of use cases, we conclude that animated 2.5D object
maps can practically benefit program comprehension tasks, but further research is
needed to improve scalability and usability.

Approach
We record a trace of an object-oriented program and display it in a novel interactive
animated 2.5D object map visualization (fig. 2). The visualization comprises an object
map and a timeline. The object map displays each object as a cuboid block with its
name and fields and arranges object blocks based on their classes and mutual references
and interactions. As the animation plays, colors and a curved trail indicate the
activation of objects that execute methods, and users can track the control flow
throughout the object graph. The timeline provides an overview of the execution time
and the call tree. Through the 3D view, more details can be added to the visualization
and users can take different perspectives on the object graph.

Evaluation
We used our TRACE4D prototype to explore six different program traces from four differ-
rent domains in the Squeak/Smalltalk programming system (tab. 1, fig. 3). Animated
2.5D object maps told us the most about program traces with a reasonably small
number of relevant subsystems and objects as well as carefully designed systems that
emphasize high class cohesion and extensive communication between related objects.

For suitable program traces, we could discover characteristic regions of the object graph
(e.g., the input, the AST, and the NFA for the regular expression use case in fig. 1) as
well as significant segments of program behavior (e.g., the parsing, compilation, and
optimization stages). Based on these insights, we were able to develop and refine our
mental model of the explored systems’ functioning and link it to specific classes and
objects in their implementation. Furthermore, the interactive visualization helped us to
explore and analyze communication patterns, reflect on the system design, and share
and discuss our mental models with other developers.

https://linqlover.github.io/trace4d/

Background
Programmers often encounter familiar or unfamiliar software systems that they want to
repair, modify, or extend. To understand these systems, they build up a mental model
that links observable behavior to architectural and implementation units. For this,
programmers traditionally start by studying the source code of systems. Because this
approach is often hampered by abstractions and a lack of examples, behavior-centric
exploration has become more popular in which programmers invoke a system with
concrete inputs or test cases and explore its execution in a debugger to identify relevant
units and their interactions by example.

Since traditional debuggers can only move forward along the execution time of a
program, omniscient debuggers (or time-travel debuggers) allow for exploration of a
recorded program trace in a nonlinear fashion [Pothier, 2009] (fig. 1). However, the
displays of omniscient debuggers are too fine-grained and text-heavy to provide an
overview of large program traces with multiple subsystems and many interacting
objects, posing a need for inter-active visualization techniques that can be used to
explore systems’ behavior at large.

Figure 1: Using the TRACEDEBUGGER, an omniscient
debugger for the Squeak/Smalltalk programming system,
to explore the parsing of a regular expression pattern
[Thiede, 2023].

Table 1: Ratings of our experience with animated 2.5D
object maps for program comprehension. We gained the
most insights from smaller program traces that
thoroughly model behavior through communication
between objects and avoid many similar objects.

Figure 3: Animated object maps of an HTML parser (left)
and a backtracking regular expression matcher (right).

https://linqlover.github.io/trace4d/
https://linqlover.github.io/trace4d/
mailto:Christoph.thiede@student.hpi.de
https://github.com/LinqLover
mailto:Christoph.thiede@student.hpi.de
https://hpi3d.de/people/current/scheibel.html
mailto:doellner@uni-potsdam.de
https://www.hpi3d.de/
https://doi.org/10.1145/2909476
https://doi.org/10.1109/VISSOFT52517.2021.00024
https://doi.org/10.1109/VISSOFT52517.2021.00024
https://doi.org/10.1007/s12650-022-00868-1
https://doi.org/10.1007/s12650-022-00868-1
https://doi.org/10.1109/MS.2009.169
https://doi.org/10.1109/MS.2009.169
https://doi.org/10.1145/3622758.3622892
https://doi.org/10.1145/3622758.3622892
https://doi.org/10.1145/3622758.3622892
https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1109/VISSOF.2007.4290706
https://linqlover.github.io/trace4d/
https://linqlover.github.io/trace4d/
https://github.com/hpi-swa-lab/squeak-tracedebugger
https://linqlover.github.io/trace4d/
https://linqlover.github.io/trace4d/app.html?trace=traces/regexMatch.json

	Folie 3

