“weagsapy €
3 WNriteStream!

— =
£ ”'
aRullatcher:
bt iy o
e i,
G sl G 1

o]

. aonw"
Ry -@\a\%im’ 7“““’““‘ J

allgenatiea p 8
ra E

b7

"afiwe

\ 2: 8

N\

=
£
=

14
W/

ditounliidn.
E

oy (60910t

ARtz

I condlltes: il g B

oafoPotifus ol wSif ol
oM idaron d eePrfa gy,
ecila 1] prafican: i

Lo e

SuAmREy =

il RxsPiece’"

efind
| ! | atom: a RxsPredicato

ax: 1

Smalltalk

w

E3
D
=
D)

Meews”

Smalltalk

- =
RxsRegex

branoh: a RxsBranch

isCapturing: truo
R S

- .
RxsPiece
% atom. a RusProdicato

max: nil

e

TR aEa T
a RxsPredicate
V) negation: {closure] in ...,

dicate: [closure] in...,

Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam

Bringing Objects to Life: Supporting Program Comprehension
through Animated 2.5D Object Maps from Program Traces

Christoph Thiede, Willy Scheibel, Jirgen Dollner
Hasso Plattner Institute, Germany

IVAPP 2024
2024-02-27

Background

m Increasing demand for program comprehension:

o Explore and reverse-engineer large unfamiliar software systems

o Build up a mental model that links observable behavior to architectural
and implementation UNits [Hamou-Lhadj et al., 2004; von Mayrhauser et al., 1995]

m Traditional approaches:

o Source-code centric exploration: Package/file-based navigation

Abstract descriptions, overwhelming details

o Behavior-centric exploration: Example-based navigation in a debugger

Observe concrete program instances (e.g., test cases) through their
call stack to identify relevant units and interactions

Omniscient debuggers (or time-travel debuggers): Record a program

trace to explore behavior in nonlinear fashion through a call tree
[Pothier and Tanter, 2009; Perscheid et al., 2012]

Too fine-grained and text-heavy information displays

Hasso
Plattner
Institut

» RxParser(RxAbstractParser)>>match:
 RxParser>>characterSet
ReadStream(PositionableStream): > position
» RxParser(RxAbstractParser)>>inputUpTo:nestedOr

T RxParser=:>branch
+ RxParser>>piece
* RxParser>=>atom
» False(Boolean)>=>or:or:
» False{Boolean)>>or:or:or:

_ Restart || Into |

Over IThmughI Back | Where | up

characterSet

sets in regexes.”
| start spec errorMessage |

start := source position.

“Match a range of characters: something between '[' and "J'.
Opening bracked has already been seen, and closing should
not be consumed as well. Set spec is as usual for

errorMessage := 'no terminating "]"'.

spec 1= self inputUpTo: $] nestedOn: $[errorMessage: errorMessage.

self

all inst vars
source
lookahead

all temp vars | || errorMessage: 'no
start terminating "]"
spec

thisContext start: nil
stack top spec: nil

Using the TraceDebugger in Squeak/
Smalltalk to explore the parsing of a regular
expression pattern. [Thiede et al., 2023a]

Christoph Thiede
IVAPP 2024
2024-02-27
Chart 2

https://github.com/hpi-swa-lab/squeak-tracedebugger

Approach

m Visualize object-oriented programs as animated 2.5D object maps:

O

O

Object map: Blocks represent objects, arrows represent references

Force-directed graph layout based on classes, references, and interactions
between objects

Animation: Object activations and communication during program execution
— Color indication [Harrower and Brewer, 2003] and curved trail (control flow)

Timeline: Temporal navigation and call tree overview [Gregg 2016]

Hasso
Plattner
Institut

Bringing Objects to Life:
Supporting Program
Comprehension through
Animated 2.5D Object
Maps from Program
Traces

Christoph Thiede
IVAPP 2024
2024-02-27
Chart3

Hasso
Plattner
Institut

Demo: The TRACE4D Prototype

Each block represents an object
(an instance of a class) within the
program trace. Fields of: the . directed graph in which objects
object are rendered as tiles below . ~ S < with many mutual references
the label. - S 3 < - 12 Rstege (P 3 or method invocations or a

s .ﬁ.._?qrc; : e RxsPiece relative unit attract each other.

'atom: a RxsProdicate
soolamxm e isCapturing: t
la RxsPiece’" max: nil

. ‘ key: nil
References between objects are s S .

; ; ' atom: a RxsPradicato
rendered as directed arrows. ¥ 5 i i' X =Y
M max: 1 \

SRRt
min: 1 RxsPredicate

The layout of objects
is computed using a force-
“=isCapturing: truo

\,

‘negation: [closure] in ...,
o 55" : e predicate: [closure] n..
Y “weagsaumy € 1 3

2 WriteStream! /:/

Color indicates the recency of the The trail connects the last The timeline summarizes the call
last activation of the object (i.e., k=15 active objects (that have tree of the program trace as a
the execution of any method). executed a method). flame graph [Gregg, 2016].

Chart 4

https://linqlover.github.io/trace4d/app.html?trace=traces/regexParse.json

Evaluation

O

O

O

O

O

Experience report of the TRACE4D prototype:
Analyzed 6 program traces from 4 domains within the Squeak/Smalltalk environment

Suitable program traces:

Small to moderate number of subsystems and objects

High class cohesion and extensive communication between objects

Types of visual insights:

Identify characteristic regions of the object graph

Identify significant behavior stages within the program execution

Hasso
Plattner
Institut

Bringing Objects to Life:
Supporting Program
Comprehension through
Animated 2.5D Object
Maps from Program
Traces

Christoph Thiede
IVAPP 2024
2024-02-27
Chart 6

Conclusion

m Possible benefits for program comprehension:

O

O

O

Develop and refine a mental model of system functioning and
link it to implementation artifacts

Exploring and analyzing communication patterns

Reflect on system design and share/discuss mental models with coworkers

s Future Work:

O

Visual scaling for larger object graphs through trace summarization
[Hamou-Lhadj and Lethbridge, 2006]

Improve clarity of the object graph through clustering and
hierarchical layout approaches [atzberger et al., 2023; Scheibel et al., 2018]

Evaluate potential and limitations through user study

Integrate visualization into programmers’ toolchains

Hasso
Plattner
Institut

Bringing Objects to Life:
Supporting Program
Comprehension through
Animated 2.5D Object
Maps from Program
Traces

Christoph Thiede
IVAPP 2024
2024-02-27
Chart7

BRINGING OBJECTS TO LIFE: SUPPORTING PROGRAM COMPREHENSION

THROUGH ANIMATED 2.5D OBJECT MAPS FROM PROGRAM TRACES
Christoph Thiede, Willy Scheibel, and Jiirgen Déllner

Hasso Plattner lnsti’tute, Universityy of Potsdam, Germany IinqIover'githUb'io/trace4d

Abstract Approach Evaluation

Programmens who want to cxplore the architecture of software systems need We record a trace of an object-oricnted program and display it in a novel interactive We used onr TRACEAD prototype to explore six different program traces from four differ-

appropriate visualizations such as software maps. However, cxisting software animated 2.5D object map viswalization (fig. 2). The visnalization comprises an obj rent domains in the Squeak/Sm programming system (tab. 1, fig. 3). Animated
visualizations mainly display the static software structure, neglecting important map and a timeline, The object map displays cach object as a cuboid block with its 2.5D object maps told us the most about program traces with a reasonably small
dynamic numtime behavior. We propose animated 2.5D object maps that depiet name and fields and arranges objeet blocks based on their classes and mutual references number of relevant subsystems and objects as well as carcfully designed systems that
particular objects and their interac-tions from a progeam trace. From our expericnee of and interactions. As the animation plays, colors and a curved trail indicate the emphasize high class cohesion and extensive communication between related objects.

usiug our prototype with a couple of use cases, we conclude that animated 2.5D object activation of o that execute methods, and users can track the coutrol flow For siae progran s, s ol v charcterisic o of te b, rah
waps cau practically benefit program comprehension tasks, but further research is throughout the object graph. The tiweline provides an overview of the execution time ST wil A6 NEA. fos (hé sogulaf cipeoailin i G I B 1)
needed to fmprove scalability and usability. and the call tree. Through the 3D view, more details can be added to the visualization ; Y b 2

well as significant segments of program beh

dior (¢.g.. the parsing, compilation, and

and users can take different. perspectives on the object graph

optimization stages). Based on these insights. we were able to develop and refine our
wental wodel of the explored systems” functioniug and lik it to specific classes aud

Raparser>>branch D 5 s :
objects in their implementation. Furthermare, the ctive visualization helped us to
= explore and analyze communication patterns, reflect on the system design, and share
- and discuss our mental models with other developers
. i e

RxParser>>characterSet]
ReadsreamPoszonsciesiream)>>poston H H
+ RaParsercAnst 5 £ i
b bl he loyout of objects T H
Cr T I e T B (an instance of a cls) is compute] using force- £ £ g4
characterset o Program 8 2 £E

Motch 2 range of characters: something between ‘I'and Reger
Gpening tracked has aiready been seen, and ciozing shout g " e + . + .
s Norphic Ul frumewrk
+ Event b :
bt Tnspactor toul
rodered ax i initilizotin

HIAL pacsing

Table 1: Ratings of our experience with animated 2.5D
object maps for program comprehension. We gained the
most insights from smaller program ftraces that
thoroughly model behavior through communication
between objects and avoid many similar objects.

errorMessage: ‘no
terminating *1"*

Usiug the TRACEDEBUGGER, an ommiscient
r the Squeak/Smalltalk programming system.
of a regular expression pattern

jede, 2023]

The tisnelive sun
e o o
flame graph

o

tast
the exceution of any wetbod).

Figure 8: Animated object maps of an HTML parser (left)
and a backtracking regular expression matcher (right’).

Background

Programmers often encounter familiar or unfamiliar software systems that they want to

repair, modify, or extend. ems, they build up a mental model References
that links obervable plementation units. For this, Figure 2: An unimated object map in our TRACE4D prototype showing o program trace for the Gregs, B. (2016). The flame graph. Communications of the ACM, 59(6):48-57.
programmers traditionally start by studying the source code of systems. Because this pérsing of a regular expression in the Squeak;/Smalltalk programming environment.

Krause, A., Hansen, M., and Hasselbring, W.
software citics with heat map overlays. In Proc. VISSOFT, pages 125-129.

21). Live visualization of dynamic

EE.

2). Visual variables and

ation, 26(1):249-274

anter, E. (2009). Back to the future: Omniscient debugging. IEEE
8¢

approach is often hampered by abstractions and a lack of examples, behavior-centric

exploration has become more popular in which programmers invoke a svstem with
concrete inputs or test cases and explore its execution in a debugger to identify relevant Limberger, D., Scheibel, W., Dollner, J., and Trapp, M
units and their interactions by example. configuration of software maps. Springer Journal of Visual

S
program, omniscient debuggers (or time-travel debuggers) allow for exploration of a
cded program trace in a nonlincar fashion [Pothicr, 2009 (fig. 1). However, the
(lh])h\\ of omniscient dehuggers ne-grained and text-heavy to provide an
overview of large program traces with multiple subsystems and many in
fques that can be used to

and T

o traditional debuggers can only move forward along the execution time of a

Thiede, C., Taeumel, M., and Hirschfeld, R Time-awareness in object explora-
tion tools: Toward in situ omniscient debugging. In Proc, SIGPLAN Onward!, pp. 89
102, ACM,

Wettel, R. and Lanza, M. (2
VISSOFT. pages 99. IFFF‘

are to

Tacting

. posing a need for inter-active visualization tech ulizing software systems as cities. Tn Proc.

vior at large.

ore systems” bel

Christoph Thicde. Willy Scheibel Jiirgen Dllner Computer Graphics
dent.hipi.de I 1Ghpi.de Hasso Plattuer lustitute

Prof.-Dr.-Helmert-Str. 2 3

mua:mmc-mmy

Systems Group %’ ﬂ Hasso

https://linqlover.github.io/trace4d/poster-ivapp.pdf
https://linqlover.github.io/trace4d

References

Atzberger, D., Cech, T., Scheibel, W., Limberger, D., and Déllner, J. (2023). Visualization of source code similarity using 2.5D semantic software maps. In VISIGRAPP2021: Computer Vision, Imaging and Computer Graphics
Theory and Applications, pages 162-182. Springer.

Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi treemaps for the visualization of software metrics. InProc. SoftVis, pages 165-172. ACM.

Boothe, P. and Badame, S. (2011). Animation of object-oriented program execution. In Proc. Bridges 2011:Mathematics, Music, Art, Architecture, Culture, pages 585-588. Tessellations Publishing.

Brown, M. H. and Sedgewick, R. (1984). A system for algorithm animation. In Proc. SIGGRAPH, pages 177-186. ACM.

Cheng, Y.-P., Chen, J.-F., Chiu, M.-C., Lai, N.-W., and Tseng, C.-C. (2008). XDIVA: A debugging visualization system with composable visualization metaphors. In Proc. SIGPLAN OOPSLA, pages 807-810. ACM.
Chis, A., Girba, T., and Nierstrasz, O. (2014). The moldable debugger: A framework for developing domain-specific debuggers. In SLE 2014: Software Language Engineering, pages 102-121. Springer.
Cornelissen, B., Zaidman, A., van Deursen, A., and van Rompaey, B. (2009). Trace visualization for program comprehension: A controlled experiment. In Proc. ICPC, pages 100-109. IEEE.

Dashuber, V. and Philippsen, M. (2022). Trace visualization within the Software City metaphor: Controlled experiments on program comprehension. Elsevier In-formation and Software Technology, 150:55-64.
Dugerdil, P. and Alam, S. (2008). Execution trace visualization in a 3D space. In Proc. ITNG, pages 38-43.|EEE.Fittkau,

F., Waller, J., Wulf, C., and Hasselbring, W. (2013). Live trace visualization for comprehending large software landscapes: The ExplorViz approach. In Proc. VISSOFT, pages 18:1-4. |EEE.

Gestwicki, P. and Jayaraman, B. (2005). Methodology and architecture of JIVE. In Proc. SoftVis, pages 95-104. ACM.

Gregg, B. (2016). The flame graph. Communications of the ACM, 59(6):48-57.

Hamou-Lhadj, A. and Lethbridge, T. C. (2004). A survey of trace exploration tools and techniques. In Proc. CASCON, pages 42-55. IBM Press.

Hamou-Lhadj, A. and Lethbridge, T. C. (2006). Summarizing the content of large traces to facilitate the understanding of the behaviour of a software system. In Proc. ICPC, pages 181-190. IEEE.

Harrower, M. and Brewer, C. A. (2003). ColorBrewer.org: An online tool for selecting colour schemes for maps. The Cartographic Journal, 40(1):27-37.

Jerding, D. F. and Stasko, J. T. (1998). The Information Mural: a technique for displaying and navigating large information spaces. IEEE TVCG, 4(3):257-271.

Ko, A.J. and Myers, B. A. (2008). Debugging reinvented: Asking and answering why and why not questions about program behavior. In Proc. ICSE, pages 301-310. ACM.

Krause, A., Hansen, M., and Hasselbring, W. (2021). Live visualization of dynamic software cities with heat map overlays. In Proc. VISSOFT, pages 125-129. |EEE.

Kruskal, J. B. and Landwehr, J. M. (1983). Icicle plots: Better displays for hierarchical clustering. Taylor & Francis The American Statistician, 37(2):162-168.

Lange, D. B. and Nakamura, Y. (1997). Object-oriented program tracing and visualization. IEEE Computer,30(5):63-70.Langelier, G., Sahraoui, H., and Poulin, P. (2008). Exploring the evolution of software quality with
animated visualization. In Proc. VLHCC, pages 13-20. IEEE.

Lemieux, F. and Salois, M. (2006). Visualization techniques for program comprehension — a literature review. InProc. SoMeT, pages 22-47. 10S Press.

Lienhard, A., Ducasse, S., and Girba, T. (2009). Takingan object-centric view on dynamic information with object flow analysis. Elsevier Computer Languages, Systems & Structures, pages 63—79.

Limberger, D., Scheibel, W., Déllner, J., and Trapp, M. (2022). Visual variables and configuration of software maps. Springer Journal of Visualization, 26(1):249-274.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. In Proc. AVI, pages 373-376. ACM.

Perscheid, M., Haupt, M., Hirschfeld, R., and Masuhara, H. (2012). Test-driven fault navigation for debugging reproducible failures. J-STAGE Information and Media Technologies, 7(4):1377-1400.

Pothier, G. and Tanter, E. (2009). Back to the future: Omniscient debugging. IEEE Software, 26(6):78-85.

Reiss, S. P. (2007). Visual representations of executing programs. Elsevier Journal of Visual Languages & Computing, 18(2):126-148.

Scheibel, W., Limberger, D., and Déllner, J. (2020a). Survey of treemap layout algorithms. In Proc. VINCI, pages1:1-9. ACM.

Scheibel, W., Trapp, M., Limberger, D., and Déllner, J.(2020b). A taxonomy of treemap visualization techniques. In Proc. IVAPP, pages 273-280. INSTICC, SciTePress.

Scheibel, W., Weyand, C., and DélIner, J. (2018). EvoCells — a treemap layout algorithm for evolving tree data. In Proc. IVAPP, pages 273-280. SciTePress.

Sorva, J., Karavirta, V., and Malmi, L. (2013). A review of generic program visualization systems for introductory programming education. ACM Transactions on Computing Education, 13(4):1-64.

Thiede, C. and Rein, P. (2023). Squeak by example. Lulu, 6.0 edition.

Thiede, C., Taeumel, M., and Hirschfeld, R. (2023a). Object-centric time-travel debugging: Exploring traces of objects. In Proc. <Programming>, pages 54-60. ACM.

Thiede, C., Taeumel, M., and Hirschfeld, R. (2023b). Time-awareness in object exploration tools: Toward in situ omniscient debugging. In Proc. SIGPLAN Onward!, pages 89-102. ACM.

von Mayrhauser, A. and Vans, A. M. (1995). Program comprehension during software maintenance and evolution. IEEE Computer, 28(8):44-55.Walker, R. J., Murphy, G. C., Freeman-Benson, B., Wright, D., Swanson, D.,
and Isaak, J. (1998). Visualizing dynamic software system information through high-level models. ACM SIGPLAN Notices, 33(10):271-283.

Waller, J., Wulf, C., Fittkau, F., Déhring, P., and Hasselbring, W. (2013). SynchroVis: 3D visualization of monitoring traces in the city metaphor for analyzing concurrency. In Proc. VISSOFT, pages 2:1-4. IEEE.
Weninger, M., Makor, L., and M&ssenback, H. (2020). Memory Cities: Visualizing heap memory evolution using the software city metaphor. In Proc. VISSOFT, pages 110-121. |EEE.

Wettel, R. and Lanza, M. (2007). Visualizing software systems as cities. In Proc. VISSOFT, pages 92-99. |EEE.

Hasso
Plattner
Institut

Bringing Objects to Life:
Supporting Program
Comprehension through
Animated 2.5D Object
Maps from Program
Traces

Christoph Thiede
IVAPP 2024
2024-02-27
Chart9

	Folie 1: Bringing Objects to Life: Supporting Program Comprehension through Animated 2.5D Object Maps from Program Traces Christoph Thiede, Willy Scheibel, Jürgen Döllner Hasso Plattner Institute, Germany
	Folie 2: Background
	Folie 3: Approach
	Folie 4: Demo: The trace4d Prototype
	Folie 6: Evaluation
	Folie 7: Conclusion
	Folie 8
	Folie 9: References

